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1 Introduction

The overall goal of this project was to develop, implement, and evaluate methods for im-
proving image quality in dynamic magnetic resonance imaging. We focused specifically on
dynamic contrast-enhanced (DCE) imaging of breast cancer patients. The fundamental chal-
lenge in dynamic MRI is the tradeoff between spatial resolution and temporal resolution. In
addressing this problem, most traditional dynamic acquisition methods and associated re-
construction methods have been based on operations in the data domain, known as k-space,
implicitly assuming that the object varies smoothly in time. We explored an image recon-
struction scheme based on an object domain model that does not attempt any k-space data
recovery, but rather explicitly uses the assumption of temporal smoothness in the image do-
main to estimate the image sequence that best fits the available data. Our proposed method
is called Temporal Regularization Use in Image Reconstruction (TRUIR), and is a penalized
likelihood formulation that includes spatial and temporal regularization terms in addition to
the data fidelity term. We incorporated parallel imaging, accelerated our algorithm, evaluated
the effect of spatial and temporal regularization parameters on the resolution properties of
reconstructed image sequences, and explored new phase encode sampling schemes that work
well in conjunction with TRUIR.

2 Body

2.1 Reconstruction Model and Cost Function Design

Our proposed method for reconstructing DCE MR images is based on minimizing a three
term image domain cost function. We call our method Temporal Regularization Use in Image
Reconstruction (TRUIR). The first term in the cost function is a data fidelity term, which
ensures that the image estimate is consistent with the measured data. The second and
third terms in the cost function are weighted spatial and temporal penalty terms. We use
these terms to incorporate our a priori knowledge about the object, namely that there is a
certain smoothness expected in both space and time. The spatial regularizer penalizes large
differences between neighboring pixels in space and the temporal regularizer penalizes large
differences between neighboring pixels in time. There are regularization parameters α and
β that determine the relative weighting within the cost function of the spatial and temporal
regularization terms, respectively.

In the past decade the idea of using multiple receiver coils to simultaneously acquire MR
data has been introduced and the practice is now widespread [1–3]. This is known as parallel

imaging and, in general, reduces the required scan time. Therefore we deemed it important
to incorporate parallel imaging into our methods and have done so.

In addition to the work discussed in the following sections, this year we have added many
tools and functions to the group’s code base, including the creation of a new data object
to assist in TRUIR reconstructions. These additions will be available to fellow and future
students and researchers, which will help ensure the long-term progress and viability of this
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project.

2.2 Extension to Parallel Imaging

In the past decade the idea of simultaneously using multiple receiver coils to acquire MR
data has been introduced and the practice is now widespread [1,2]. This is known as parallel

imaging and, in general, reduces the required scan time. Therefore we deemed it important
to incorporate parallel imaging into our methods and have done so.

2.3 Algorithm Acceleration

A drawback of iterative reconstruction methods, compared to conventional methods, is in-
creased computation time. For our proposed method, the most computationally expensive
step in determining the image estimate is computing the gradient of the cost function. We
were able to accelerate our computation by exploiting Toeplitz matrices in this step [4]. This
acceleration technique has previously been investigated for use in static, field-corrected MR
image reconstruction [5], but, to our knowledge, we are the first to apply it to dynamic
MRI. For this study, the Toeplitz-modified algorithm was 1.7 times faster than the original
algorithm.

2.4 Phase Encode Sampling Strategies

Because the data in most dynamic MR acquisitions is severely undersampled, the quality of
most dynamic reconstruction schemes is heavily dependent on which k-space locations are
sampled. We expect this to hold true for our TRUIR as well. We are in the process of
exploring a variety of 2D phase encode (PE) sampling strategies to determine which have
optimal temporal/ spatial resolution tradeoff for the TRUIR method.

The TRUIR formulation gives us some flexibility in terms of what we consider to be one
time frame. An acquired set of data can be grouped in different ways to produce different
reconstructed image sequences. That is, with a given amount of collected data, one can
decide during post processing how many image frames one would like to reconstruct. For a
given amount of data, reconstructing more frames means there is less data grouped in each
frame. Traditionally, this would result in severe undersampling artifacts in the resultant image
sequence, but because the TRUIR formulation includes an explicit temporal roughness penalty
that enforces some connectivity between time frames, there is potential to have flexibility
in the number of reconstructed frames (equivalently, frame rate), while maintaining image
quality.

We compared three different phase encode sampling strategies. The first phase encode
(PE) sampling scheme we studied is one that is currently in use for DCE MRI studies of
the breast at the University of Michigan hospital, on a Philips 3T scanner. We refer to this
as the Original Trajectory. It is an elliptically shuttered, partial Fourier acquisition, that
is also undersampled by a factor of 2 in the SENSE direction, ky. The Original Trajectory
is shown in Fig. 1, where the order in which the samples are acquired is indicated by the
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Figure 1: Original Trajectory. Dark circles represent PE locations that are sampled earlier in
the acquisition, and light circles represent locations that are sampled later during acquisition.
The Original Trajectory starts sampling near DC and works its way out, with the highest
frequency sample locations being sampled latest in the acquisition.

darkness of the circle. The darker circles represent locations that are sampled earlier in the
scan and lighter circles are locations that are sampled later, i.e., the overall sampling occurs
from low frequency to high frequency. For the current reconstruction method used by the
clinical scanner, the trajectory shown in Fig. 1 is collected for each reconstructed frame.

The low to high frequency ordering of the original PE acquisition means that if we break
the data into 2 subframes, the first half-frame of PE locations will all be from lower spatial
frequencies, while the second half-frame of data will all be from higher spatial frequencies.
We would like the samples within each subframe to be more balanced than those from the
Original Trajectory in terms of information content (i.e., each subframe contains samples from
large range of frequencies), so that during post-processing, we have the option to increase the
frame rate used for reconstruction. Towards this end, we developed two new PE sampling
strategies, which are both composed of the same sample locations as the Original Trajectory,
but acquired in a different order. We refer to these new PE sampling patterns as Reordered
Trajectory 1 and Reordered Trajectory 2, and they are shown in Figs. 2 and 3, respectively.
Both new trajectories are based on reordering schemes that aim to more uniformly distribute
the samples in time, in terms of the samples’ radial distance from the center of k-space.
This feature is illustrated in Figure 4, which plots each sample location of the acquisition in
terms of its radial distance from the center of k-space vs the time at which that that sample is
acquired. In the plot for the Original Trajectory (top), the samples’ increasing radial distance
over time indicates the inside to out ordering of that trajectory, whereas the samples for both
Reordered Trajectories clearly show more uniform distributions.
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Figure 2: Reordered Trajectory 1.

Figure 3: Reordered Trajectory 2.
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Figure 4: Radial distribution of sample locations over time. Original Trajectory (top), Re-
ordered Trajectory 1 (middle), and Reordered Trajectory 2 (bottom). Both reordered trajec-
tories show a more uniform distribution of sample locations over time, in terms of the samples’
radial distance from the center of k-space (shown on the y-axis), than the Original Trajectory.
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Figure 5 shows another comparison of the three PE trajectories. The PE locations sampled
during the first half of a full acquisition are shown on the left, and for the second half of
acquisition on the right, for each trajectory. During the first half of acquisition, the Original
Trajectory covers only the low frequencies, while the first half of the Reordered Trajectories
cover the entire range of frequencies of a full acquisition.

2.5 Regularization Parameters

A challenging aspect of any regularized formulation is choosing appropriate regularization
terms, as well as determining the relative weights of these terms. In our formulation, the
weighting of these terms is implemented with temporal and spatial regularization parameters,
α and β. Regularization parameter choice can significantly influence the quality of the recon-
structed images. For practical use of our reconstruction approach, one must understand how
the regularization parameters α and β in the cost function affect the reconstructed images. For
TRUIR reconstruction of dynamic image sequences, the temporal regularization parameter
α is of particular importance. Essentially we want to use an α that is large enough to pro-
vide adequate “connectivity” between the frames, but small enough so that the reconstructed
image sequence correctly reflects dynamic changes in the object.

We aimed to address the issue of regularization parameter choice by analyzing the reso-
lution properties of the TRUIR method. To do this, we examined the local impulse response
in space and time. Our initial evaluation looked at the spatial and temporal resolution of a
TRUIR formulation for a single coil acquisition and found an expected relationship between
β and spatial resolution, and α and temporal resolution [6]. Similar analysis of penalized-
likelihood reconstruction for (static) tomography was presented in [7].

We then evaluated the effects of regularization parameter choice on the full TRUIR for-
mulation, which includes parallel imaging. We have found that the analysis for the multi-coil
case is significantly more complicated than the single coil case. We have not determined an
analytical method for choosing the regularization parameters, but we have examined various
aspects of the spatial point spread function (PSF) of a impulse that is static in time, and have
found some measures that may be useful in selecting appropriate regularization parameter
values.

We found that the variability in the full-width half-max (FWHM) of the spatial PSF may
be one useful indicator for temporal regularization parameter selection (in some cases), and
examining the energy in the tails of the spatial PSF may also be an effective method.

Figure 6 shows the spatial PSFs for TRUIR reconstructions using a range of temporal
regularization parameters, log2 α = [−10 : 2 : 10]. We evaluated the static impulse response
of TRUIR reconstructions using log2 α = [−10 : 2 : 10], for each of the three phase encode
trajectories in Section 2.4. We reconstructed 24-frame image sequences from 12 ‘full’ frames
of data, meaning that each reconstructed image frame is associated with only half of the
samples that would be acquired in a full traversal of the PE sampling trajectory.

For all tested values of α, we visually examined the PSF over all 24 frames, and plotted
the value of the PSF peak vs frame, as well as the frame to frame change in FWHM of the
PSF. The results for PSFs of the Original Trajectory are shown in Figure 6. The top portion
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Figure 5: PE locations sampled in the first and second half of a “full” frame acquisition.
Sample locations acquired during the first half of acquisition are shown in the left column and
those acquired during the second half are shown on the right. The top row shows half frame
sample locations from the Original Trajectory, the middle row shows those from Reordered
Trajectory 1, and the bottom row shows results from Reordered Trajectory 2.
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Figure 6: PSF features as a function of α for the Original Trajectory with 24-frame TRUIR
reconstruction. The top figure shows the PSF over 24 frames (along the x-axis) for various
values of α (y-axis). The middle and bottom plots are of the peak PSF value at each of the
24 frames, and (angularly averaged) FWHM of the PSF at each frame, respectively. Each
value of α is represented by a different colored line.
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of the figure shows the PSF at each of the 24 reconstructed frames (along the x-axis) for
each of the tested values of α (along the y-axis). Here we clearly see that for log2 α = -10,
the PSF at every even frame looks quite different from the PSFs in the odd frames. For the
Original Trajectory, all of the odd frames are associated with the low-frequency half of the
PE samples, and all of the even frames are associated with the high-frequency samples in
the acquisition. Therefore, the odd and even image frames initially contain complementary
information (based on the data-fidelity term), and without sufficient temporal regularization
this information is not adequately shared between frames. Thus, for log2 α = -10 the PSFs
in the odd frames are from only low-frequency samples and appear rather blurred, while
the PSFs in the even frames are from only high-frequency samples, which is reflected in the
reduced energy and visible sharp edges in the even frames. When we increase log2 α to 8 or
10, we start to see the effect of the temporal regularizer across the PSFs of all 24 frames.
There is less variability between PSFs in adjacent frames with log2 α = 8 than log2 α = 6,
and the interframe variability is smaller yet with log2 α = 10, i.e., the reconstructed PSF is
getting closer to the true static impulse.

In an attempt to quantify these qualitative observations, we looked at how the magnitude
of the PSF peak changes from frame to frame, for the range of α values. This is the middle plot
of Figure 6, where each value of α is represented by a different colored line. Interestingly, we
found that the magnitude of the PSF peak changes very little from frame to frame, regardless
of the value of α.

As a second attempt to quantify our qualitative observations of clear variability between
adjacent image frames, we looked at the change in FWHM from frame to frame, which appears
in the bottom plot of Figure 6. Here we see a clear distinction in interframe FWHM variability
between α values that resulted in qualitatively bad and good looking PSFs. Values of α whose
PSFs show distinct differences between odd and even frames have high interframe FWHM
variability. For all tested log2 α values less than 6, the FWHM for even frames was about 2.5
pixels, while the FWHM for odd frames was almost twice that, at about 4.5 pixels. However,
for log2 α = 8 and 10, which we have observed result in the best looking PSF sequences, the
difference in FWHM between odd and even frames is much smaller, around 0.1-0.2 pixels.
These findings suggest that looking at the interframe variability of the FWHM could be
useful in choosing a good value for α. A temporal regularization parameter that is sufficient
to reduce the interframe FWHM variability of a static PSF may also be sufficient to support
adequate sharing of information in reconstructed image sequences of dynamic objects.

Figure 7 shows the PSF images, PSF peak and FWHM over 24 frames for data acquired
using Reordered Trajectory 1. The results for both Reordered Trajectories are largely sim-
ilar, and the following observations hold for both. Because the samples in the Reordered
Trajectories are more evenly distributed in k-space over time, we do not see any strong visible
differences between PSFs of even and odd frames, even for the smallest tested temporal regu-
larization parameter value of log2 α = -10. In fact, visual inspection doesn’t show a significant
difference in the PSF over 24 frames for log2 α = -10 compared to the PSF for log2 α = 10.
Furthermore, the PSFs for the reordered trajectories with any of the tested values for α look
visually superior to the best PSF for the Original Trajectory. For the Reordered Trajectories,
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Figure 7: PSF features as a function of α for Reordered Trajectory 1 with 24-frame TRUIR
reconstruction. The top figure shows the PSF over 24 frames (along the x-axis) for various
values of α (y-axis). The middle and bottom plots are of the peak PSF value at each of the
24 frames, and (angularly averaged) FWHM of the PSF at each frame, respectively. Each
value of α is represented by a different colored line.

the difference in FWHM between frames does not show much dependence on α, at least within
the range of αs included in this simulation. The maximum change in FWHM The interframe
variability in FWHM for reconstructions from the Reordered Trajectories does not provide
any indication for choosing one value of α over another, as it did for the Original Trajectory.
This result suggests that reconstructions of samples acquired using Reordered Trajectory 1
or Reordered Trajectory 2 may be more robust to the choice of the temporal regularization
parameter, α, than are reconstructions of samples acquired using the Original Trajectory.

We examined one other measure of the effect of α on the static impulse response that may
aid in regularization parameter selection: the energy contained in the tails of the PSF. For
each PE ordering, we computed the energy in the PSF tails, for frame 12 and frame 13 of a
24-frame reconstruction (again reconstructed from 12 ‘full’ frames of data). We defined the
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Figure 8: PSF tail energy vs α.

tails to consist of any signal located outside of a ry x rz rectangle, centered at the location
of the impulse, where the dimensions of the rectangle were chosen to be equal to 3 FWHMs
of the PSF reconstructed from a full frame’s worth of samples. The results are shown as a
function of α in Figure 8. For each trajectory, the tail energy in the 12th and 13th frames is
shown, as well as the mean tail energy of those frames, and the tail energy that exists in a
single fully sampled frame (i.e., includes all 4766 samples from a full traversal of one of our
PE trajectories).

As we saw with the FWHM comparison, for the Original Trajectory the energy in the tails
in even frames is quite different than the energy in the tails in odd frames, for most values of
α within the tested range. The energy in the tails for even and odd frames begins to converge
around log2 α of 8 or 10, which is consistent with our previous findings based on interframe
variability of the FWHM. For the Reordered Trajectories, the energy in the tails of the even
and odd frames is fairly close for all tested values of α, and is reduced for larger values of α,
in the range log2 α = 8 to 10.

The results of examining the energy in the the PSF tails supports our previous findings
that the choice of temporal regularization parameter has a much larger effect on PSFs of
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the Original Trajectory than on those from the Reordered Trajectories. Again this suggests
relative robustness of the Reordered Trajectories to temporal regularization parameter choice.

The conclusions from our studies on the selection of the temporal regularization parameter
for multi-coil TRUIR are as follows. For 24-frame reconstructions of samples acquired accord-
ing to the Original Trajectory, we need to use a relatively large value for α, in the range of
log2 α = 10, to enforce enough temporal smoothness for adjacent frames to adequately share
their complementary information, thereby compensating for the undersampling in each frame.
For 24-frame reconstructions of samples acquired using Reordered Trajectory 1 or Reordered
Trajectory 2, we examined many measures, but did not find any clear indicators for choosing
one α over another. That is, we found all of the PSF features that we investigated to be rela-
tively insensitive to the choice of α (within the range that we tested log2 α = [−10to10]). This
is good news, as it suggests a relative robustness to temporal regularization parameter choice
for the Reordered Trajectories, which means that we should be able to reconstruct quality
image sequences without spending too much time looking for an α that is “just right”.

We must also note that because the simulations outlined above used an impulse that is
static in time, we were able to find temporal regularization parameter values that were too
small, i.e., did not provide enough connectivity between frames, but our simulation results
indicate nothing about values that are too large, i.e., provide too much connectivity between
frames (since the true object did not vary over time). Examining simulation results of a
realistic dynamic phantom will shed further light on the topic of temporal regularization
parameter selection, and a subset of these results is presented in Section 2.6.

2.6 DCE-MRI Simulations and Results

In dynamic contrast-enhanced (DCE) MRI, a contrast agent is used to enhance the MR
images. The uptake of contrast agent in tissue has been shown to be clinically important
in detection and diagnosis of breast cancer, as well as other cancers. The contrast agent is
injected into the subject’s blood stream and as it travels through the body, it affects the
underlying physical mechanisms of MRI and thereby alters the appearance of various tissues
in the MR image [8–11]. The enhancement characteristics of tumors differ from those of
healthy tissue; enhancement characteristics also differ between healthy and benign lesions.
These differences in enhancement arise from differences in vascular permeability as well as
differing angiogenic properties [12].

Standard parameters are used to measure the kinetics of DCE-MRI, including the volume
transfer constant, Ktrans, and the rate constant, kep, [13]. One of the aims of this project was
to evaluate the utility of our reconstructed image sequences to provide accurate estimates of
these clinically important kinetic parameters.

We simulated DCE-MR breast imaging with a dynamic, bilateral 2D digital phantom,
representing a slice through the breast in the sagittal plane. We included 6 lesions, with 3
distinct enhancement patterns: slow, moderate, and rapid enhancement. A small (radius =
2 pixels) and large lesion (radius = 10 pixels) were included for each enhancement pattern.

Our chosen true kinetic parameter values fall within the (wide) range of those reported
in the literature [14–19], and correspond with values used by a previous PhD student to
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Figure 9: True enhancement curves for the slow, moderate, and rapidly enhancing lesions in
our simulated object.

simulate enhancement of breast lesions [20]. The slowly enhancing lesion has Ktrans = 0.2
min−1, kep = 1.3 min−1, and ve = 0.15. The moderately enhancing lesion has Ktrans = 0.6
min−1, kep = 2.0 min−1, and ve = 0.3, while the rapidly enhancing lesion has Ktrans = 3.0
min−1, kep = 6.0 min−1, and ve = 0.5. The “healthy” tissue in our simulations does not exhibit
any enhancement. Figure 9 shows the true enhancement patterns for the modeled lesions,
and Figure 10 shows the true dynamic object at 1 minute, when the lesions are beginning to
show enhancement.

We use the object’s true enhancement at each TR to generate the k-space data, one PE
location at a time. As in an actual MR scan of a dynamic object, each PE sample in our
simulations represents the dynamic object at a different point in time. This was a multi-coil
simulation in which we used real sensitivity maps from a 7-coil breast array. We generated
three sets of k-space data, according to the three Phase Encode Trajectories discussed in
Section 2.4. Each data set consists of 12 full traversals of each PE trajectory, i.e., we generated
12 ‘full’ frames of data.

We reconstructed 12 and 24-frame dynamic image sequences from the simulated data using
our proposed TRUIR method, as well as with a more traditional Homodyne+SENSE (HS)
reconstruction for comparison [21]. For our TRUIR reconstructions, we tested 3 values for
the spatial regularization parameter β (log2 β = [−8, 0, 6]), and 11 values for the temporal
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Figure 10: True dynamic object used in our simulations, shown at a single point in time (1
minute).

regularization parameter α (log2 α = [0 : 2 : 20]), which yields a total of 33 combinations of
regularization parameters, and therefore a total of 66 dynamic TRUIR reconstructed image
sequences of each data set (33 12-frame reconstructions + 33 24-frame reconstructions).

We found that TRUIR reconstructed image sequences had more accurate temporal dy-
namics than HS reconstructions, but suffered in spatial resolution, compared to HS recon-
structions. TRUIR reconstructed image sequences were better able to capture the lesions’
enhancement, than were HS reconstructions. Figure 11 shows the TRUIR enhancement error
as a function of the temporal regularization parameter, α. All TRUIR reconstructions repre-
sented in this figure use log2 β = 6. The enhancement value shown for each reconstruction is
the mean normalized absolute enhancement error, averaged over all 6 lesions and all frames.
The enhancement for each lesion is measured at the center pixel of the lesion. The mean
enhancement error of a traditional 12-frame HS reconstruction of the Original Trajectory is
included for reference, as is the enhancement error of the best HS reconstruction, which was
a 24-frame reconstruction of Reordered Trajectory 1.

Figure 11 shows that all TRUIR reconstructions beat even the best HS reconstruction,
for a range of values of α. The 24-frame TRUIR reconstruction of the Original Trajectory
is the most sensitive to the choice of temporal regularization parameter, giving huge errors
for most values of α and only beating the best HS reconstruction for a single value of α

(log2 α = 8). TRUIR reconstructions based on the Reordered Trajectories (12 and 24-frame
reconstructions) exhibit more robustness to the choice of temporal regularization parame-
ter, showing good performance for a large range of α values, as does the 12-frame TRUIR
reconstruction of the Original Trajectory. All 12-frame TRUIR reconstructions show fairly
constant enhancement error for log2 α = 0 to 8, regardless of trajectory.

The 24-frame TRUIR reconstructions of the reordered trajectories show the overall best
performance in terms of enhancement error, with the error minimized with a temporal reg-
ularization parameter in the range of log2 α = 6 to 8. The lowest enhancement error over
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Figure 11: Enhancement error as a function of temporal regularization parameter, α. The
x-axis shows the values of log2 α (‘l2a’).
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all methods was achieved with a 24-frame TRUIR reconstruction of Reordered Trajectory 1
using a temporal regularization parameter of log2 α = 6.

While our TRUIR image sequences showed more favorable temporal properties than HS
reconstructions, they also showed poorer spatial resolution. Figure 12 shows the small, rapidly
enhancing lesion, in the 3rd frame of 12-frame reconstructions of data acquired accord-
ing to the Original Trajectory. The figure shows the true lesion (A), reconstruction using
SENSE only (B), HS (C), TRUIR with very small regularization parameters (log2 α = 0 and
log2 β = −8) (D), and TRUIR with log2 α = 6 and log2 β = 6 (E), along with the normalized
absolute error of each reconstruction. We included a TRUIR reconstruction with the small
regularization parameters (D) to verify that the increased spatial blur seen in the TRUIR
reconstructions is not due to oversmoothing, i.e., using too large regularization parameters.

One can see that the HS reconstruction (C), has less spatial blur in the y-direction (x-axis)
than both the SENSE-only (B) and TRUIR reconstructions (D-E). This can also be seen in
Figure 13, which shows profiles through the reconstructed lesions. The fact that the two
TRUIR reconstructed image frames look almost identical confirms that the spatial blur we
see in TRUIR is not a result of using overly large regularization parameters, since the TRUIR
reconstruction in (D) used the smallest regularization parameters within the range that we
tested.

Because our TRUIR reconstructions have similar spatial resolution to the SENSE-only
reconstruction, we can conclude that the superior spatial resolution of HS reconstruction is
attributable to the homodyne part of the reconstruction algorithm (and not the SENSE part).
The shape of the HS y-profile in Figure 13 also reflects the reduced spatial blur in y.

Recall that all of our simulated trajectories are partial Fourier acquisitions, meaning the
number of high frequency measurements is reduced by half in comparison to a traditional
symmetric full Fourier acquisition. It is this reduction in high frequency data that results
in reduced spatial resolution for our TRUIR reconstructions, in comparison to HS recon-
structions. One of the first steps in homodyning (and HS reconstruction) is to run the partial
Fourier data through a high pass filter that doubles the high frequencies, which sort of “makes
up” for the other half of high frequency measurements that are missing in a partial Fourier
acquisition. Our current TRUIR formulation includes nothing akin to this. Our data fidelity
term fits the image sequence to the measured data as is - there is no initial doubling of
high frequency components, despite the partial Fourier acquisition. Neither does our TRUIR
formulation enforce a smooth phase assumption, which is also a key feature of homodyne
reconstruction. Adjusting the TRUIR formulation to include some means of accounting for
the reduced high frequency data in partial Fourier acquisitions will be an important area of
future work. We believe that adding this adjustment will enable TRUIR reconstructions to
approach or match the spatial resolution seen in HS reconstructions.

We computed the kinetic parameters Ktrans, kep, and ve for each lesion in each recon-
structed image sequence, and compared these estimated values to the true kinetic parameter
values. Kinetic parameters were estimated based on the measured enhancement curve at the
center of each lesion [8–11,13,22]. Figure 14 shows the error in the estimated Ktrans, which is
representative of what we saw for all three kinetic parameters. Figure 14 shows the Ktrans esti-
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Figure 12: SENSE-only, HS, and TRUIR 12-frame reconstructions of the small, rapidly en-
hancing lesion. Reconstructions (top), and the normalized absolute error of each reconstruc-
tion (bottom). Frame 3 is shown. A: true, B: SENSE only, C: HS, D: TRUIR with log2 α = 0,
log2 β = −8, E: TRUIR with log2 α = 6, log2 β = 6, H: .
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Figure 14: Ktrans estimation error as a function of α. Error shown for each reconstruction is
the mean normalized absolute error of the Ktrans estimate at the lesion centers, averaged over
all lesions.

mation error for for TRUIR reconstructed image sequences as a function of α. All represented
TRUIR reconstructions used log2 β = 6. The error shown in the figure is the mean normalized
absolute error, averaged over the 6 lesions in each reconstructed image sequence. The figure
also includes Ktrans estimation error calculated from a traditional 12-frame HS reconstruction
of the Original Trajectory, for reference. The best HS Ktrans estimate is included as well.
As with the enhancement error, the lowest error in kinetic parameter estimation over all HS
reconstructions was achieved with a 24-frame HS reconstruction of Reordered Trajectory 1.
Represented results are from TRUIR reconstructions unless otherwise indicated in the legend.
Similarly, 24-frame reconstructions are indicated in the legend, and all others are 12-frame
reconstructions. The legend entry ‘reord’ refers to Reordered Trajectory 1.

In Figure 14, we see that all of the presented TRUIR reconstructions result in large im-
provements in Ktrans estimates, compared to the traditional 12-frame HS reconstruction of
the Original Trajectory. Additionally, a variety of TRUIR reconstructions outperform even
the best HS reconstruction in estimating each of the three kinetic parameters. The recon-
structions based on the Reordered Trajectories generally provide better kinetic parameter

22



estimates than reconstructions of the Original Trajectory, and 24-frame reconstructions (solid
lines) result in better kinetic parameter estimates than their associated 12-frame reconstruc-
tions (dashed lines). As with enhancement error, using a temporal regularization parameter
of log2 α <= 8 generally provides the best estimates of the kinetic parameters. For log2 α < 8,
all 3 kinetic parameters had fairly constant error within each Reordered Trajectory’s TRUIR
reconstruction, meaning that the Reordered Trajectories are more robust to choice of tem-
poral regularization parameter than the Original Trajectory. Using our proposed TRUIR
method, reordered trajectories and higher frame-rate reconstructions, we were able to reduce
the estimation error for all three kinetic parameters, compared to the traditional 12-frame HS
reconstruction of the Original Trajectory.

2.7 Summary of Results

The main results of our simulation study can be summarized as follows:

• Our proposed Reordered Trajectories 1 and 2 are more suitable for reconstructing dy-
namic image sequences with an increased frame rate, compared to the Original Trajec-
tory currently in use.

• Choosing the right value for the temporal regularization parameter, α, is very important
when reconstructing data from highly ordered, poorly distributed sample trajectories,
such as the Original Trajectory, at higher frame rates.

• Our Reordered Trajectories are more robust to the choice of α than the Original Tra-
jectory. Both Reordered Trajectories produced TRUIR image sequences with good
temporal resolution and kinetic parameter estimates, over a wide range of temporal
regularization parameter values.

• TRUIR reconstructions offer better temporal resolution than even the best HS recon-
struction. In particular, 24-frame TRUIR reconstructions of data acquired according
to Reordered Trajectory 1 or Reordered Trajectory 2 showed the best overall temporal
resolution (for log2 α < 8), compared to all other reconstructed image sequences, and
also resulted in the best kinetic parameter estimates.

• TRUIR reconstructions of the partial Fourier data in this study exhibited poorer spa-
tial resolution properties than HS reconstructions. The HS reconstruction method is
designed for reconstruction of partial Fourier data, and includes measures that address
the asymmetry of the data, such as doubling of high frequency components and utilizing
a smooth phase assumption. Our current TRUIR formulation does not include any such
compensation measures for partial Fourier acquisitions. We believe that modification
of the TRUIR formulation to better accommodate partial Fourier data will improve the
spatial resolution of TRUIR reconstructed image sequences, and this is an important
area of future work. Additionally, use of edge preserving regularization will also improve
spatial resolution of TRUIR images.
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3 Key Research and Training Accomplishments

• Developed and implemented dynamic MR image reconstruction algorithms that are
based on explicit temporal models in object space.

• Extended the algorithms to incorporate parallel imaging techniques.

• Algorithm acceleration. Decreased computation time by exploiting Toeplitz matrices in
our reconstruction.

• Investigated selection of algorithms’ regularization parameters based on desired spatial
and temporal resolution.

• Established two new 2D phase encode sampling strategies that are well-suited for re-
constructing at increased frame rates, and which also show relative robustness to choice
of temporal regularization parameter.

• Implemented realistic simulations using mathematical models that relate enhancements
in MR images to the underlying physiological behavior of both healthy and diseased
tissues.

• TRUIR reconstructed image sequences provided more accurate enhancement curves as
well as more accurate estimates of kinetic parameters, compared to traditional recon-
structions, in our studies.

4 Reportable Outcomes

• Created new data objects to assist in TRUIR reconstruction. Added many tools and
functions to code base, for use by current and future students and researchers.

• PI successfully completed the qualifying examination and achieved candidacy during
this grant period.

• Applied for and awarded NIH grant 1P01 CA87634-06A2, Project 3: Image reconstruc-
tion methods for dynamic contrast-enhanced (DCE) MRI of breast cancer.

• PI completed her dissertation research during this grant period, and completed her PhD
defense within a month of the end of the funding period.

5 Persons Receiving Pay

The following people received pay from this research effort: Kimberly Khalsa.
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6 Publications

Although no papers were published during the grant period, future publications based on the
work completed as a result of this grant are in progress.

7 Conclusion

This research project presents an object-domain model for image reconstruction in dynamic
MRI, which we refer to as TRUIR: Temporal Regularization Use in Image Reconstruction.
Our reconstruction model is formulated as penalized likelihood estimator that explicitly in-
cludes a temporal smoothness assumption in object space. TRUIR is therefore well-suited for
MR imaging of dynamic objects that vary smoothly in time, such as the objects of interest
in dynamic contrast-enhanced MRI. We extended our TRUIR model to incorporate parallel
imaging, and also accelerated TRUIR reconstructions by utilizing Toeplitz matrices.

We explored various aspects of the proposed TRUIR method including selection of spatial
and temporal regularization parameters, flexibility for increased frame rate reconstruction,
and the effect of different phase encode acquisition patterns on TRUIR reconstructions.

As discussed in Section 2.5, we explored TRUIR’s resolution properties through evaluation
of a local impulse response, and its dependence on the chosen regularization parameters.
Our DCE-MRI simulation results also included analysis of spatial and temporal resolution
properties, and resolution effects of regularization parameter choice.

We developed two new phase encode sampling trajectories that are based on reordering of
sample locations from a current sampling scheme in use for DCE-MRI studies. Our Reordered
Trajectories are designed to distribute sampling of low and high frequency locations more
uniformly in time. These trajectories offer significantly more flexibility for reconstructing
at higher frame rates, and reconstructions of our Reordered Trajectories were also relatively
robust to regularization parameter choice, especially when compared to the current trajectory
in use.

In evaluating our proposed TRUIR method, we focus on the application of DCE-MRI in
the characterization and assessment of breast cancer. We designed a multi-coil simulation
study that models dynamic contrast agent uptake in the breast with 6 representative lesions.
We compared TRUIR reconstructions to a more traditional frame-by-frame Homodyne +
SENSE reconstruction, for a variety of acquired trajectories and reconstructed frame rates.
We found that TRUIR provides improved temporal dynamics in the reconstructed dynamic
image sequence, compared to the traditional frame-by-frame reconstruction, and that TRUIR
achieved the best temporal dynamics when using samples from the Reordered Trajectories
and reconstructing at an increased frame rate. TRUIR reconstructions showed improved
lesion enhancement curves, and resulted in better estimates of the kinetic parameters Ktrans

kep, and ve. Our DCE-MRI simulation confirmed our earlier assessment that the Reordered
Trajectories are more robust to reconstructing at higher frame rates than the current clinical
trajectory, and are also more robust to the choice of the temporal regularization parameter.

Our simulation results also showed the negative result that TRUIR reconstructions ex-
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hibited worse spatial resolution than the frame-by-frame Homodyne+SENSE method. We
attribute this reduction in spatial resolution to the partial Fourier nature of the PE sampling
schemes in this study. Unlike HS reconstruction, our current TRUIR formulation does not
include any compensation measures for partial Fourier data. We believe that modification
of the TRUIR formulation to better accommodate partial Fourier acquisitions will improve
spatial resolution and is an important area of future work.

Future validation of TRUIR with a dynamic phantom study is necessary, as is eventual
validation with a human studies. Once the spatial resolution issue has been resolved, and the
effectiveness of TRUIR to improve DCE-MR image sequences has been sufficiently established
through human studies, TRUIR could be ready for clinical use.

The overall goal of this project was to develop, implement, and evaluate methods for
improving image quality in dynamic MR imaging. While our methods may have several
potential applications, we focused on areas related to breast cancer. DCE-MRI has been
shown to be effective in detection and diagnosis of breast cancer, and is additionally being
investigated as a method of early prediction of tumor response to neoadjuvant chemotherapy.
Our goal is to provide clinicians with more accurate dynamic MR image sequences, created
using our proposed TRUIR reconstruction technique. These improved image sequences will
aid in the detection and diagnosis of breast lesions, as well as assist clinicians in evaluating
a tumor’s initial response to chemotherapy, and thus predict its response (or lack thereof) to
an entire course of chemotherapy treatment. For those patients whose tumors are determined
to be non-responsive early in the chemotherapy treatment, this mode of therapy could be
discontinued. This would save huge amounts to time, emotional strain, and physical distress
for these patients, as well as time and money for health care providers.
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